Optimized Schwarz Methods with Overlap for the Helmholtz Equation
نویسندگان
چکیده
For the Helmholtz equation, simple absorbing conditions of the form ∂n − iω were proposed as transmission condition (TC) in Schwarz methods first without overlap in [4], and later also with overlap, see [3, 12]. More advanced TCs can also be used, see e.g. [11, 14, 2]. Furthermore, parameters can be introduced into TCs and then optimized for rapid convergence, which led to the so called optimized Schwarz methods, see e.g. [6, 13] for elliptic equations. Without overlap, the parameters involved in some zeroand second-order TCs for the Helmholtz equation have been optimized in [8, 7]. With overlap, preliminary numerical studies of the parameters have been presented in [5, 9]. In this paper, we present the asymptotic solutions of the corresponding optimization problems with small overlap. We also compare the optimized parameters with other choices based on convergence factors and actual iteration numbers. We finally test for the first time Taylor second-order absorbing conditions for domain decomposition with overlap in the Helmholtz case.
منابع مشابه
Optimized Schwarz Methods without Overlap for the Helmholtz Equation
The classical Schwarz method is a domain decomposition method to solve elliptic partial differential equations in parallel. Convergence is achieved through overlap of the subdomains. We study in this paper a variant of the Schwarz method which converges without overlap for the Helmholtz equation. We show that the key ingredients for such an algorithm are the transmission conditions. We derive o...
متن کاملar X iv : m at h / 07 02 03 7 v 1 [ m at h . N A ] 1 F eb 2 00 7 OPTIMIZED MULTIPLICATIVE , ADDITIVE AND RESTRICTED ADDITIVE
We demonstrate that a small modification of the multiplicative, additive and restricted additive Schwarz preconditioner at the algebraic level, motivated by optimized Schwarz methods defined at the continuous level, leads to a significant reduction in the iteration count of the iterative solver. Numerical experiments using finite difference and spectral element discretiza-tions of the positive ...
متن کاملAn optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation
Optimized Schwarz methods are working like classical Schwarz methods, but they are exchanging physically more valuable information between subdomains and hence have better convergence behavior. The new transmission conditions include also derivative information, not just function values, and optimized Schwarz methods can be used without overlap. In this paper, we present a new optimized Schwarz...
متن کاملOptimized Schwarz Methods for Maxwell’s Equations with Non-zero Electric Conductivity
The study of optimized Schwarz methods for Maxwell’s equations started with the Helmholtz equation, see [2, 3, 4, 11]. For the rot-rot formulation of Maxwell’s equations, optimized Schwarz methods were developed in [1], and for the more general form in [9, 10]. An entire hierarchy of families of optimized Schwarz methods was analyzed in [8], see also [5] for discontinuous Galerkin discretizatio...
متن کاملOptimized Schwarz Methods for Maxwell equations
Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, using characteristic transmission conditions, and it has been observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 38 شماره
صفحات -
تاریخ انتشار 2016